mization Shift-ir

System ID cases

More Mathematics Mandatory in Data Science

Bart De Moor

KU Leuven, Belgium Dept.EE: ESAT - STADIUS

bart.demoor@kuleuven.be

Basic modelling loop Models and data Nonlinear optimization Shift-invariance System ID cases Conclusions

I have deeply regretted that I did not proceed far enough at least to understand something of the great leading principles of mathematics for men thus endowed seem to have an extra sense

Charles Darwin

Outline

- 1 Basic modelling loop
- 2 Models and data
- 3 Nonlinear optimization
- 4 Shift-invariance
- 5 System ID cases

6 Conclusions

Basic modelling loop:

- Collect data (preprocess, wrangle, clean, ...)
- 2 Select model class parametrized by unknown parameters
- **③** Select an approximation criterion
- Solve' using nonlinear optimization
- S Validate the results
- **6** Re-iterate when necessary

What do we mean by 'solved' ?

- Result of nonlinear optimization ? Trouble with:
 - Starting points (feasibility);
 - ② Convergence (step sizes, rate, stopping criteria,...)
 - S Local minima
- Solved = <u>convex</u> or set of linear equations or eigenvalue problem !

Outline

- Basic modelling loop
- 2 Models and data
- 3 Nonlinear optimization
- 4 Shift-invariance
- 5 System ID cases
- 6 Conclusions

Activation Functions

Tackled by nonlinear optimization

Errors using inadequate data are much less than those using no data at all. Charles Babbage.

How nonlinear is least squares linear system identification ?

	Nonlinearity	'Heuristic' remedy
State space	$x_{k+1} = \mathbf{A}\mathbf{x}_{\mathbf{k}} + Bu_k$	Subspace:
	Unknown $A imes x_k$	Oblique projection and SVD
EIV	Unknown parameters	Instrumental Variables
	$ imes$ misfits $ ilde{u}, ilde{y}$	
PEM	Unknown parameters	Nonlinear optimization
	imes latency input e	

Tackled by nonlinear optimization

Outline

- Basic modelling loop
- 2 Models and data
- ③ Nonlinear optimization
- 4 Shift-invariance
- 5 System ID cases

6 Conclusions

Scalar smooth objective function $f(x) \in \mathbb{R}$:

$$\min_{x \in \mathbb{R}^n} f(x)$$

Gradient flow:

$$\dot{x} = -\frac{\partial f}{\partial x}$$

Lyapunov function:

$$\frac{\partial f}{\partial t} = (\frac{\partial f}{\partial x})^T \; \frac{\partial x}{\partial t} = -(\frac{\partial f}{\partial x})^T \; \frac{\partial f}{\partial x} = - \|\frac{\partial f}{\partial x}\|_2^2 \leq 0$$

Convergence to local or global minimum (depends on x(0)):

$$\frac{\partial f}{\partial x} = 0$$

Discretization (e.g. forward Euler: $\dot{x} \approx (x_{k+1} - x_k)/\tau_k$):

$$x_{k+1} = x_k - \tau_k \frac{\partial f}{\partial x}(x_k)$$

Scalar smooth objective function $f(x) \in \mathbb{R}$:

 $\min_{x\in\mathbb{R}^n}f(x)$

Weighted gradient flow: $W(x) = W(x)^T$ nonnegative definite:

$$\dot{x} = -W(x)\frac{\partial f}{\partial x}$$

Lyapunov function (weighted 2-norm):

$$\frac{\partial f}{\partial t} = (\frac{\partial f}{\partial x})^T W(x) \frac{\partial x}{\partial t} = -(\frac{\partial f}{\partial x})^T W(x) \frac{\partial f}{\partial x} \leq 0$$

Convergence to local or global minimum (depends on x(0)):

$$\frac{\partial f}{\partial x} = 0$$

Discretization (e.g. forward Euler: $\dot{x} \approx (x_{k+1} - x_k)/\tau_k$ with $W(x) = H(x)^{-1}$ inverse Hessian):

$$x_{k+1} = x_k - \tau_k W(x_k) \frac{\partial f}{\partial x}(x_k)$$

Scalar objective function $f(x) \in \mathbb{R}$, p constraints $g(x) \in \mathbb{R}^p$:

$$\min_{x \in \mathbb{R}^n} f(x) \text{ subject to } g(x) = 0$$

Projected gradient flow:

Columns of $\frac{\partial g}{\partial x} \in \mathbb{R}^{n \times p}$ are normals to tangent space $T_M(x)$ of manifold M generated by g(x) in x.

$$\dot{x} \in T_M(x) \Longrightarrow (\frac{\partial g}{\partial x})^T \ \dot{x} = 0 \Longrightarrow l = [(\frac{\partial g}{\partial x})^T \frac{\partial g}{\partial x}]^{-1} (\frac{\partial g}{\partial x})^T \frac{\partial f}{\partial x}$$

Project gradient flow

$$\dot{x} = -\left[I - \frac{\partial g}{\partial x}\left[\left(\frac{\partial g}{\partial x}\right)^T \frac{\partial g}{\partial x}\right]^{-1} \left(\frac{\partial g}{\partial x}\right)^T\right] \frac{\partial f}{\partial x} = -\Pi_M(x) \frac{\partial f}{\partial x}$$

Constrained optimization: 'Lagrangean' with Lagrange multipliers:

$$\mathcal{L}(x,l) = f(x) - l^T g(x)$$

First order optimality conditions: n + p eqs. in n + p unknowns:

$$\begin{array}{ll} \frac{\partial L}{\partial x} & = & \frac{\partial f}{\partial x} - \frac{\partial g}{\partial x}l = 0\\ \frac{\partial L}{\partial l} & = & g(x) = 0 \end{array}$$

What if f(x) (e.g. least squares) and constraints g(x) are **multivariate polynomial** ? Then

 $\frac{\partial f}{\partial x}=\frac{\partial g}{\partial x}l$ and g(x)=0 are multivariate polynomial !

Solutions ('roots'): local/global minima/maxima, and saddlepoints. The global minimum of f(x) is multivariate polynomial in one of the roots.

How to find the roots of a set of multivariate polynomials ?

Rooting a set of multivariate polynomials is an eigenvalue problem !

James Joseph Sylvester

KU LEUVE

- Algebra (fundamental theorem)
- Numerical linear algebra (power method and derivates, multiparameter eig. problem (MEVP), SVD)
- (Commutative) Algebraic geometry (ideals and varieties)
- Optimization theory (Lagrangean)
- System theory (state space, realization theory)
- nD system theory (nD realization)
- Operator theory (shift-invariant spaces)
- Interpolation theory (moment problems)

Outline

- Basic modelling loop
- 2 Models and data
- 3 Nonlinear optimization
- 4 Shift-invariance
- 5 System ID cases

6 Conclusions

Example: Univariate polynomial of degree 3:

$$x^3 + a_1 x^2 + a_2 x + a_3 = 0,$$

having three distinct roots x_1 , x_2 and x_3

- Banded Toeplitz; linear homogeneous equations
- Null space: (Confluent) Vandermonde structure
- Corank (nullity) = number of solutions

Two univariate polynomials: common roots ?

$$f(x) = x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2)(x - 3)$$

$$g(x) = -x^2 + 5x - 6 = -(x - 2)(x - 3)$$

$$\begin{aligned} f(x) &= 0 \\ x \cdot f(x) &= 0 \\ g(x) &= 0 \\ x^2 \cdot g(x) &= 0 \\ x^2 \cdot g(x) &= 0 \end{aligned} \begin{bmatrix} 1 & x & x^2 & x^3 & x^4 \\ -6 & 11 & -6 & 1 & 0 \\ -6 & 5 & -1 & & \\ & -6 & 5 & -1 \\ & & -6 & 5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ x_1 & x_2 \\ x_1^2 & x_2^2 \\ x_1^3 & x_2^3 \\ x_1^4 & x_2^4 \end{bmatrix} = 0$$

where $x_1 = 2$ and $x_2 = 3$ are the common roots of f and g

- Sylvester matrix = double banded Toeplitz
- Null space = (confluent) Vandermonde structure
- Null space = intersection of null spaces of two banded Toeplitz matrices
- Nullity = number of common zeros

The vectors in the Vandermonde kernel K obey a 'shift structure':

$$\begin{bmatrix} 1 & 1 \\ x_1 & x_2 \\ x_1^2 & x_2^2 \\ x_1^3 & x_2^3 \end{bmatrix} \begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \\ x_1^2 & x_2^2 \\ x_1^3 & x_2^3 \\ x_1^4 & x_2^4 \end{bmatrix}$$

or

$$\underline{K}.D = \overline{K}$$

The Vandermonde structure K is not available directly, instead we compute Z, for which ZV=K. We now have

$$\underline{K}.D = \overline{K}$$
$$Z.V.D = \overline{Z}.V$$

• Generalized EVP with eigenvalues in D and eigenvectors the columns of V.

• Null space $\mathbf{R}(K) = \mathbf{R}(Z)$ is shift-invariant.

Two polynomials in two variables

Consider

$$\left\{ \begin{array}{rrr} p(x,y) &=& x^2+3y^2-15=0\\ q(x,y) &=& y-3x^3-2x^2+13x-2=0 \end{array} \right.$$

• Fix a monomial order, e.g., $1 < x < y < x^2 < xy < y^2 < x^3 < x^2y < \dots$

• Construct quasi-Toeplitz Macaulay matrix M:

y 10

-1

(1)

-10

$$\begin{cases} p(x,y) &= x^2 + 3y^2 - 15 = 0\\ q(x,y) &= y - 3x^3 - 2x^2 + 13x - 2 = 0 \end{cases}$$

Continue to enlarge M ('quasi-Toeplitzification'):

- # rows grows faster than # cols \Rightarrow overdetermined system
- If solution exists: rank deficient by construction!

• Macaulay matrix M:

$$M = \begin{bmatrix} x & x & x & x & 0 & 0 & 0 \\ 0 & x & x & x & x & 0 & 0 \\ 0 & 0 & x & x & x & x & 0 \\ 0 & 0 & 0 & x & x & x & x \end{bmatrix}$$

• Solutions generate vectors in kernel of M:

$$MK = 0$$

• Number of solutions *s* follows from rank decisions

Vandermonde null space Kbuilt from s solutions (x_i, y_i) :

1	1	 1
x_1	x_2	 x_s
y_1	y_2	 y_s
x_{1}^{2}	x_{2}^{2}	 x_s^2
x_1y_1	x_2y_2	 $x_s y_s$
y_{1}^{2}	y_2^2	 y_s^2
x_{1}^{3}	x_{2}^{3}	 x_s^3
$x_1^2 y_1$	$x_{2}^{2}y_{2}$	 $x_s^2 y_s$
$x_1y_1^2$	$x_2 y_2^2$	 $x_s y_s^2$
y_1^3	y_2^3	 y_s^3
x_{1}^{4}	x_2^4	 x_4^4
$x_1^3 y_1$	$x_{2}^{3}y_{2}$	 $x_s^3 y_s$
$x_1^2 y_1^2$	$x_{2}^{2}y_{2}^{2}$	 $x_s^2 y_s^2$
$x_1y_1^3$	$x_2 y_2^3$	 $x_s y_s^3$
y_{1}^{4}	y_2^4	 y_s^4
:	:	:
L :		

Francis Sowerby Macaulay

Basic modelling loop

Models and data

onlinear optimizat

ization Shift-inv

Shift-invariance System ID case

Conclusions

Setting up an eigenvalue problem in \boldsymbol{x}

 $\bullet~$ Choose s~ linear independent rows in K~

S_1K

• This corresponds to finding linear dependent columns in *M*

1	1		1	
x_1	x_2		x_s	
y_1	y_2		y_s	
x_{1}^{2}	x_{2}^{2}		x_s^2	
x_1y_1	x_2y_2		$x_s y_s$	
y_1^2	y_{2}^{2}		y_s^2	
x_1^3	x_{2}^{3}		x_s^3	
$x_{1}^{2}y_{1}$	$x_{2}^{2}y_{2}$		$x_s^2 y_s$	
$x_1 y_1^2$	$x_2y_2^2$		$x_s y_s^2$	
y_1^3	y_{2}^{3}		y_s^3	
x_1^4	x_{2}^{4}		x_4^4	
$x_{1}^{3}y_{1}$	$x_2^3y_2$		$x_s^3 y_s$	
$x_{1}^{2}y_{1}^{2}$	$x_{2}^{2}y_{2}^{2}$		$x_{s}^{2}y_{s}^{2}$	
$x_1 y_1^3$	$x_2 y_2^3$		$x_s y_s^3$	
y_1^4	y_{2}^{4}		y_s^4	
:	:	:	:	
•	·	· ·	· · -	22 /

Shifting the selected rows gives (shown for 3 columns)

1	1	1
x_1	x_2	x_3
y_1	y_2	y_3
x_{1}^{2}	x_{2}^{2}	x_{3}^{2}
$x_{1}y_{1}$	x_2y_2	x_3y_3
y_{1}^{2}	y_{2}^{2}	y_{3}^{2}
x_{1}^{3}	x_{2}^{3}	x_{3}^{3}
$x_{1}^{2}y_{1}$	$x_{2}^{2}y_{2}$	$x_{3}^{2}y_{3}$
$x_1 y_1^2$	$x_2y_2^2$	$x_3y_3^2$
y_{1}^{3}	y_{2}^{3}	y_3^3
x_{1}^{4}	x_{2}^{4}	x_{4}^{4}
$x_{1}^{3}y_{1}$	$x_{2}^{3}y_{2}$	$x_{3}^{3}y_{3}$
$x_1^2 y_1^2$	$x_2^2 y_2^2$	$x_3^2 y_3^2$
$x_1 y_1^3$	$x_2y_2^3$	$x_{3}y_{3}^{3}$
y_{1}^{4}	y_2^4	y_{3}^{4}
:	:	:

1	1	1 1
x_1	x_2	x_3
y_1	y_2	y_3
x_{1}^{2}	x_{2}^{2}	x_{3}^{2}
$x_1 y_1$	x_2y_2	x_3y_3
y_{1}^{2}	y_2^2	y_{3}^{2}
x_{1}^{3}	x_{2}^{3}	x_{3}^{3}
$x_1^2 y_1$	$ x_2^2 y_2 $	$x_{3}^{2}y_{3}$
$x_1 y_1^2$	$x_2 y_2^2$	$x_{3}y_{3}^{2}$
y_{1}^{3}	y_2^3	y_{3}^{3}
x_1^4	x_{2}^{4}	x_4^4
$-x_1^3y_1$	$x_{2}^{3}y_{2}$	$x_{3}^{3}y_{3}$
$x_1^2 y_1^2$	$\begin{bmatrix} 2 \\ x_2^2 y_2^2 \end{bmatrix}$	$x_{3}^{2}y_{3}^{2}$
x_1y_1	$x_2y_2^3$	$x_3y_3^3$
y_{1}^{4}	y_{2}^{4}	y_{3}^{4}
· ·		
L :	:	:

so that:

"shift with x" \rightarrow

Finding the *x*-roots

Let $D_x = \operatorname{diag}(x_1, x_2, \ldots, x_s)$, then

 $S_1 KD_x = S_x K,$

where S_1 selects linear independent rows of K and S_x the ones 'hit' by the shift x.

Generalized Vandermonde K is not known as such, instead a null space basis Z is calculated, which is a linear transformation of K:

$$ZV = K$$

which leads to the generalized eigenvalue problem

$$\begin{pmatrix} S_1 & Z \end{pmatrix} V D_x = \begin{pmatrix} S_x & Z \end{pmatrix} V$$

Here, V is the matrix with eigenvectors, D_x contains the roots x as eigenvalues.

Setting up an eigenvalue problem in y

It is possible to shift with y as well...

We find

$$S_1 K D_y = S_y K$$

with D_y diagonal matrix of y-components of roots, leading to

$$(S_y Z)V = (S_1 Z)VD_y$$

Some interesting observations:

- same eigenvectors V!
- $(S_xZ)^{-1}(S_1Z)$ and $(S_yZ)^{-1}(S_1Z)$ commute \implies 'commutative algebra'

$$\Gamma = \begin{pmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{p-2} \\ CA^{p-1} \end{pmatrix} \Longrightarrow \underline{\Gamma}A = \overline{\Gamma}$$

- Null space of Toeplitz or Sylvester
- Single shift (only one A)
- Cayley-Hamilton
- Shift-invariant R(Γ) fixed by λ(A)
- 1D observability
- 1D realization theory
- ID Beurling-Lax
- 'Block' when C = matrix

$$\Gamma = \begin{pmatrix} \frac{C}{CA_{1}} \\ \frac{CA_{2}}{CA_{1}^{2}} \\ \frac{CA_{1}A_{2}}{CA_{1}^{2}} \\ \frac{CA_{1}A_{2}}{CA_{2}^{2}} \\ \vdots \\ \frac{CA_{1}^{p-1}}{CA_{1}^{p-2}A_{2}} \\ \vdots \\ CA_{2}^{p-1} \end{pmatrix} \implies \frac{\Gamma}{\Gamma}A_{1} = S_{1}\Gamma \\ \frac{\Gamma}{A_{2}} = S_{2}\Gamma$$

- Null space of Macaulay
- n shifts A_1, A_2 : $A_1A_2 = A_2A_1$
- nD Cayley-Hamilton (new)
- Multi-shift invariant ${\bf R}(\Gamma)$ fixed by $\lambda(A_1)$ and $\lambda(A_2)$
- nD observability
- nD realization theory
- nD Beurling-Lax
- 'Block' when C = matrix

KU LEUVEN

Not treated here:

- Deflate roots at infinity
- Algorithms: kernel-driven versus data-driven (QR), SVD for rank decisions,
- Cayley-Hamilton (in 1D and nD)
- 1D and nD system theoretic interpretations of the null space (1D and nD observability matrices) based on 1D/nD state space models (possibly singular (roots at infinity))

• ...

Finding the minimum of univariate polynomial

$$p(x) = \alpha_0 x^n + \alpha_1 x^{n-1} + \ldots + \alpha_n$$
$$\min_{\sigma} \sigma = p(x) \text{ subject to } p'(x) = 0$$

Construct Sylvester matrix M with $\sigma = p(x)$ and p'(x) = 0:

$$\begin{pmatrix} M_{11} & M_{12} \\ M_{21} - \sigma I & M_{22} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = 0$$
$$(M_{21} - M_{22}M_{12}^{-1}M_{11})u = u\sigma$$

$$p(x) = 6x^5 - 45x^4 + 110x^3 - 90x^2 + 30$$

$$p'(x) = 30x^4 - 180x^3 + 330x^2 - 180x$$

Fifth degree polynomial

(0 0 0 0 0	$egin{array}{c} -180 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$330 \\ -180 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$-180 \\ 330 \\ -180 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{c c} 30 \\ -180 \\ 330 \\ -180 \\ 0 \end{array} $	$\begin{array}{r} 0 \\ 30 \\ -180 \\ 330 \\ -180 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 30 \\ -180 \\ 330 \end{array}$	$0 \\ 0 \\ 0 \\ 30 \\ -180$	0 0 0 30		$\begin{array}{c}x \\ x^2 \\ x^3 \\ x^4 \end{array}$	= 0
	$30 - \sigma$	0	-90	110	-45	6	0	0	0		x^5	
	0	$30 - \sigma$	0	-90	110	-45	6	0	0		x^6	
	0	0	$30 - \sigma$	0	-90	110	-45	6	0		x^7	
	0	0	0	$30 - \sigma$	0	-90	110	-45	6	/ \	78	/

Eigenvalues of $(M_{21} - M_{22}M_{12}^{-1}M_{11})$

$$\lambda \begin{pmatrix} 30 & -54 & 45 & -10\\ 0 & -30 & 56 & -15\\ 0 & -90 & 135 & -34\\ 0 & -204 & 284 & -69 \end{pmatrix} = (30, 22, 11, 3)$$

KU LEUVEN

Minimal eigenvalue from inverse power method ! 29/55

Generalizes to multivariate polynomial optimization problems:

 $\min_{x \in \mathbb{R}^n} f(x) \text{ subject to } g(x) = 0,$

with f(.) scalar multivariate polynomial objective function $g(x) \in \mathbb{R}^p$ p multivariate polynomial constraints:

- Sylvester matrix \longrightarrow (block) Macaulay matrix
- \bullet Null space shift-invariant \longrightarrow multi-shift invariant
- 1 parameter EVP \longrightarrow multi-parameter EVP
- Critical value global minimum σ as smallest eigenvalue \longrightarrow Critical value global minimum $\sigma = f(x^*)$ where elements of x^* are eigenvalues of commuting matrices A_1, A_2, \ldots obtained from multi-shift invariant null space.

Outline

- Basic modelling loop
- 2 Models and data
- 3 Nonlinear optimization
- 4 Shift-invariance
- 5 System ID cases

6 Conclusions

Basic modelling loop Models and data Nonlinear optimization Shift-invariance **System ID cases** Conclusions

SISO transfer function (with $\mathcal{Z}{x_k} = x(z)$), e.g. ARMAX:

$$y(z)=\frac{b(z)}{a(z)}u(z)+\frac{c(z)}{a(z)}e(z),$$

with polynomial a(z) (monic), b(z), c(z) (monic) of degree n_a, n_b, n_c .

Corresponding difference equation with $\alpha_i, \beta_i, \gamma_i \in \mathbb{R}$:

$$y_{k+n_a} + \alpha_1 y_{k+n_a-1} + \ldots + \alpha_{n_a} y_k = \beta_0 u_{k+n_b} + \beta_1 y_{k+n_b-1} + \ldots + \alpha_{n_b} u_k + e_{k+n_c} + \gamma_1 e_{k+n_c-1} + \ldots + \gamma_{n_c} e_k$$

Algebraic representation, e.g. ARMAX.

$$T_a y = T_b u + T_c e$$

where $y^T = (y_0 \ y_1 \ \dots \ y_N)$ and e, u alike.

 T_a, T_b, T_c are banded Toeplitz convolution operators, e.g. T_c :

Latency case: Moving average: Given $y \in \mathbb{R}^N$.

$$\min_{e \in \mathbb{R}^{N+n_c}, \gamma_i \in \mathbb{R}} \sigma^2 = \|e\|_2^2 \text{ subject to } y = T_c e.$$

 $T_c \in \mathbb{R}^{N \times (N+n_c)}$ = banded Toeplitz of full row rank (monic: $\gamma_0 = 1$). $e \in \mathbb{R}^{N+n_c}$ because of n_c initial conditions. Underdetermined set of linear equations: minimum norm solution

$$e = T_c^{\dagger} y = T_c^T (T_c T_c^T)^{-1} y,$$

so that

$$\sigma^2 = \|e\|_2^2 = e^T e = y^T (T_c T_c^T)^{-1} y = y^T D_c^{-1} y ,$$

where D_c is symm. pos. def. banded Toeplitz, quadratic in the γ_i .

Interpretation: We look for a metric D_c^{-1} in which the weighted norm of y is minimal. T_c^{\dagger} is a 'whitening' filter.

First order optimality conditions from $\sigma^2 = y^T D_c^{-1} y$:

$$\frac{\partial \sigma^2}{\partial \gamma_i} = y^T \frac{\partial D_c^{-1}}{\partial \gamma_i} y = -y^T D_c^{-1} \frac{\partial D_c}{\partial \gamma_i} D_c^{-1} y = 0 , \ i = 1, \dots, n_c.$$
(1)

These are n_c 'nonlinear' equations in the n_c unknowns $\gamma_i.$ Since

$$D_c^{-1} = \operatorname{adj}(D_c) / \det(D_c),$$

where the adjugate matrix $\operatorname{adj}(D_c)$ is multivariate polynomial in the γ_i , equations (1) constitute n_c multivariate polynomials in n_c variables γ_i :

$$\frac{\partial \sigma^2}{\partial \gamma_i} = 0 = y^T \operatorname{adj}(D_c) \frac{\partial D_c}{\partial \gamma_i} \operatorname{adj}(D_c) y , i = 1, \dots, n_c.$$

The γ_i are the roots of a set of n_c multivariate polynomials in n_c unkowns.

Call
$$f = D_c^{-1}y$$
, then, with $\sigma^2 = y^T D_c^{-1}y$:

$$\begin{pmatrix} D_c & y \\ y^T & \sigma^2 \end{pmatrix} \begin{pmatrix} f \\ -1 \end{pmatrix} = 0.$$
 (2)

First order optimality conditions: Chain rule with $D_c^{\gamma_i} = \partial D_c / \partial \gamma_i$, $f^{\gamma_i} = \partial f / \partial \gamma_i$ and $\partial \sigma^2 / \partial \gamma_i = 0$:

$$\begin{pmatrix} D_c^{\gamma_i} & 0\\ 0 & 0 \end{pmatrix} \begin{pmatrix} f\\ -1 \end{pmatrix} + \begin{pmatrix} D_c & y\\ y^T & \sigma^2 \end{pmatrix} \begin{pmatrix} f^{\gamma_i}\\ 0 \end{pmatrix} = 0, \ i = 1, \dots, n_c.$$
(3)

 $(N+1)(n_c+1)$ equations: N+1 in (2) and $n_c.(N+1)$ in (3). $(N+1)(n_c+1)$ unknowns: N (f) $+ n_c.N$ (f^{γ_i}) $+ n_c$ (γ_i) + 1 (σ^2).

The last row of (2) defines σ^2 .

The last row of (3) defines n_c orthogonality relations $y^T f^{\gamma_i} = 0, i = 1, \dots, n_c$.

$$\begin{pmatrix} D_c^{\gamma} & D_c & 0 \\ D_c & 0 & y \\ 0 & y^T & 0 \end{pmatrix} \begin{pmatrix} f \\ f^{\gamma} \\ -1 \end{pmatrix} = 0.$$

For N = 4:

(2γ	1	0	0	$1 + \gamma^{2}$	γ	0	0	0)	(f_0)	
[1	2γ	1	0	γ	$1 + \gamma^{2}$	γ	0	0	$\begin{pmatrix} \tilde{f}_1 \\ f_1 \end{pmatrix}$	
	0	1	2γ	1	0	γ	$1 + \gamma^2$	γ	0	f_2	
	0	0	1	2γ	0	0	γ	$1 + \gamma^2$	0	f_3	
1	$1 + \gamma^2$	γ	0	0	0	0	0	0	y_0	$f_{\rm Q}^{\gamma}$	= 0.
	γ	$1 + \gamma^{2}$	γ	0	0	0	0	0	y_1	$f_{1_{\chi}}$	
	0	γ	$1 + \gamma^2$	γ	0	0	0	0	y_2	$f_{2'}$	
ł	0	0	γ	$1 + \gamma^2$	0	0	0	0	y_3	$\left(\frac{f_3}{1} \right)$	
1	0	0	0	0	y_0	y_1	y_2	y_3	0 /	\ -1 /	

Regroup as quadratic eigenvalueproblem and 'linearize' :

$$(A_2\gamma^2 + A_1\gamma + A_0)z = 0 \text{ with } z = \begin{pmatrix} -1 \\ f \\ f^{\gamma} \end{pmatrix} \Longrightarrow \begin{pmatrix} 0 & I \\ A_0 & A_1 \end{pmatrix} \begin{pmatrix} z \\ z\gamma \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & -A_2 \end{pmatrix} \begin{pmatrix} z \\ z\gamma \end{pmatrix} \gamma.$$

Block shift invariant null space $\Longrightarrow \mathsf{EVP}$

Latency case MA ($n_c = 2$)

$$\left(\begin{array}{ccc} D_c^{\gamma i} & D_c & 0 \\ D_c & 0 & y \\ 0 & y^T & 0 \end{array} \right) \left(\begin{array}{c} f \\ f^{\gamma i} \\ -1 \end{array} \right) = 0 \; , \; i = 1, 2.$$

Regroup in a multi-parameter eigenvalue problem with $z^T = (-1 f^T (f^{\gamma_1})^T (f^{\gamma_2})^T)$:

$$(A_{00} + A_{10}\gamma_1 + A_{01}\gamma_2 + A_{20}\gamma_1^2 + A_{11}\gamma_1\gamma_2 + A_{02}\gamma_2^2) \begin{pmatrix} z \\ z\gamma_1 \\ z\gamma_2 \\ z\gamma_1^2 \\ z\gamma_1^2 \\ z\gamma_1^2 \\ z\gamma_1^2 \end{pmatrix} = 0.$$

and build up block Macaulay recursively (quasi-Toeplitz-ify) until 'mind-the-gap' starts in the null space, which is **block multi-shift invariant**:

	1	γ_1	γ_2	γ_1^2	$\gamma_1\gamma_2$	γ_2^2	γ_1^3	$\gamma_1^2 \gamma_2$	$\gamma_1 \gamma_2^2$	γ_2^3	γ_1^4		12	、 、
1	(A_{00})	A_{10}	A_{01}	A_{20}	A_{11}	A_{02}	0	0	0	0	0)	$\left(\frac{z\gamma_1}{z\gamma_1}\right)$)
$\times \gamma_1$	0	A_{00}	0	A_{10}	A_{01}	0	A_{20}	A_{11}	A_{02}	0	0		$z\gamma_2$	
$\times \gamma_2$	0	0	A_{00}	0	A_{10}	A_{01}	0	A_{20}	A_{11}	A_{02}	0		$\frac{1}{z\gamma_1^2}$	
$\times \gamma_1^2$	0	0	0	A_{00}	0	0	A_{10}	A_{01}	0	0	A_{20}		22122	1_0
$\times \gamma_1 \gamma_2$	0	0	0	0	A_{00}	0	0	A_{10}	A_{01}	0	0		~ /1 /2 ~~2	
$\times \gamma_2^2$	0	0	0	0	0	A_{00}	0	0	A_{10}	A_{01}	0		~ 3	
												.	2.91	
:	(:	:	:	:	:		:	:	:	:	:	: /]
													\ \	/

Block multi-shift invariant null space \implies Multiparameter EVP

KU LEUVEN

$$\sigma^2 = \|\tilde{y}\|_2^2$$

Block multi-shift invariant null space \implies Multiparameter EVP

KU LEUVEN

Misfit case: Dynamic Total Least Squares (n_a, n_b)

$$\sigma^2 = \|\tilde{u}\|_2^2 + \|\tilde{y}\|_2^2$$

Block multi-shift invariant null space \Longrightarrow Multiparameter EVP

Block multi-shift invariant null space \implies Multiparameter EVP

KU LEUVEN

nization Shift-inv

Conclusion

Latency case: ARMAX (n_a, n_b, n_c)

Block multi-shift invariant null space \Longrightarrow Multiparameter EVP

Misfit case: Output Error (n_a, n_b)

$$\sigma^2 = \|\tilde{y}\|_2^2$$

Block multi-shift invariant null space \Longrightarrow Multiparameter EVP

KU LEUVEN

Misfit+Latency case: ARMAX with I/O Misfit(n_a, n_b, n_c)

Block multi-shift invariant null space \Longrightarrow Multiparameter EVP

KU LEUVEN

KU LEUVEN

System ID cases Conclusion

Name	u	e	α	β	γ	a	b	c	d
Exact data									
Autonomous system	0	0	∞	∞	∞	a	1	1	1
Exact FIR	u	0	∞	∞	∞	1	b	1	1
Diff. eq.	u	0	∞	∞	∞	a	b	1	1
:									
Latency									
MA	0	e	∞	∞	1	1	1	c	1
AR	0	e	∞	∞	1	1	1	1	d
ARMA	0	e	∞	∞	1	1	1	c	d
ARMAX	u	e	∞	∞	1	a	b	c	a
:									
Misfit									
LS Realization	0	0	1	∞	∞	a	1	1	1
OE FIR	u	0	1	∞	∞	1	b	1	1
IE FIR	u	0	∞	1	∞	1	b	1	1
IE+OE FIR	u	0	α	β	∞	1	b	1	1
OE	u	0	1	∞	∞	a	b	1	1
IE	u	0	∞	1	∞	a	b	1	1
Dynamic TLS	u	0	α	β	∞	a	b	1	1
Misfit + Latency ARMAX with M+L	$ _{u}$	e	α	β	γ	a	b	c	a
		2	-	2	/		5	2	

49 / 55

- lf
- Activation functions = polynomial function of sum of weighted (= parameters) inputs
- Objective function is multivariate polynomial (e.g. least squares)

then, in principle, training a neural network is finding the minimal eigenvalue of a (large) matrix.

Outline

- Basic modelling loop
- 2 Models and data
- **3** Nonlinear optimization
- 4 Shift-invariance
- 5 System ID cases

6 Conclusions

Main conclusions:

- Multivariate polynomial problems are ubiquitous (many applications!)
- Multivariate polynomial optimization problems are eigenvalue problems
- Path goes over
 - Affinely structured matrices: Toeplitz, Sylvester, Macaulay and block versions
 - Multiparameter eigenvalue problems
 - Null spaces that are (block) (multi-)shift invariant
 - Roots follow from the multi-shift invariance via nD realization theory
 - Only one minimizing root needs to be calculated (e.g. inverse power method)
- Misfit/latency identification of LTI dynamical systems = solved !
- Patiently studying mathematics (over different fields), inventing new math and deploying it into mathematical engineering, pays off.
- This talk: many details omitted !

Future work

- Numerical algorithms (large scale structure exploiting iterative algorithms)
- Explore system theoretic properties
- Explore numerical issues: conditioning, sensitivity, etc.
- Applicability to neural nets / machine learning ?

Basic modelling loop Models and data Nonlinear optimization Shift-invariance System ID cases Conclusions

Bolzmann at 55: "When I look back on all the scientific developments and revolutions that occurred since the beginning of my career, I feel like a monument of ancient scientific memories. I would go further and say that I am the only one left who still grasped the old doctrines with unreserved enthusiasm - at any rate I am the only one who still fights for them as far as I can. I regard as my life's task to help to ensure, by as clear and logically ordered an elaboration as I can give of the results of the classical theory, that the great portion of valuable and permanently usable material that in my view is contained in it need not be rediscovered one day, which would not be the first time that such an event had happened in science. I therefore present myself to you as a reactionary, one who has stayed behind and remains enthusiastic for the old classical doctrines as against the men of today; but I do not believe that I am narrow-minded or blind for the advantages of the new doctrines."

Bolzmann at 55: "When I look back on all the scientific developments and revolutions that occurred since the beginning of my career, I feel like a monument of ancient scientific memories. I would go further and say that I am the only one left who still grasped the old doctrines with unreserved enthusiasm - at any rate I am the only one who still fights for them as far as I can. I regard as my life's task to help to ensure, by as clear and logically ordered an elaboration as I can give of the results of the classical theory, that the great portion of valuable and permanently usable material that in my view is contained in it need not be rediscovered one day, which would not be the first time that such an event had happened in science. I therefore present myself to you as a reactionary, one who has stayed behind and remains enthusiastic for the old classical doctrines as against the men of today; but I do not believe that I am narrow-minded or blind for the advantages of the new doctrines."

At the end of the day, the only thing we really understand, is linear algebra

