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I have deeply regretted
that I did not proceed far enough
at least to understand something

of the great leading principles of mathematics
for men thus endowed

seem to have an extra sense

Charles Darwin
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Basic modelling loop:

1 Collect data (preprocess, wrangle, clean, ...)

2 Select model class parametrized by unknown parameters

3 Select an approximation criterion

4 ‘Solve’ using nonlinear optimization

5 Validate the results

6 Re-iterate when necessary

What do we mean by ‘solved’ ?

Result of nonlinear optimization ? Trouble with:

1 Starting points (feasibility);
2 Convergence (step sizes, rate, stopping criteria,...)
3 Local minima

Solved = convex or set of linear equations or eigenvalue problem !
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Tackled by nonlinear optimization
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Errors using inadequate data are much less
than those using no data at all.

Charles Babbage.
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How nonlinear is least squares linear system identification ?

Nonlinearity ‘Heuristic’ remedy
State space xk+1 = Axk +Buk Subspace:

Unknown A× xk Oblique projection and SVD
EIV Unknown parameters Instrumental Variables

× misfits ũ, ỹ
PEM Unknown parameters Nonlinear optimization

× latency input e

Tackled by nonlinear optimization
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Scalar smooth objective function f(x) ∈ R:

min
x∈Rn

f(x)

Gradient flow:

ẋ = −∂f
∂x

Lyapunov function:

∂f

∂t
= (

∂f

∂x
)T

∂x

∂t
= −(

∂f

∂x
)T

∂f

∂x
= −‖∂f

∂x
‖22 ≤ 0

Convergence to local or global minimum (depends on x(0)):

∂f

∂x
= 0

Discretization (e.g. forward Euler: ẋ ≈ (xk+1 − xk)/τk):

xk+1 = xk − τk
∂f

∂x
(xk)
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Scalar smooth objective function f(x) ∈ R:

min
x∈Rn

f(x)

Weighted gradient flow: W (x) = W (x)T nonnegative definite:

ẋ = −W (x)
∂f

∂x

Lyapunov function (weighted 2-norm):

∂f

∂t
= (

∂f

∂x
)TW (x)

∂x

∂t
= −(

∂f

∂x
)TW (x)

∂f

∂x
≤ 0

Convergence to local or global minimum (depends on x(0)):

∂f

∂x
= 0

Discretization (e.g. forward Euler: ẋ ≈ (xk+1 − xk)/τk with
W (x) = H(x)−1 inverse Hessian):

xk+1 = xk − τkW (xk)
∂f

∂x
(xk)
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Scalar objective function f(x) ∈ R, p constraints g(x) ∈ Rp:

min
x∈Rn

f(x) subject to g(x) = 0

Projected gradient flow:

ẋ = −∂f
∂x

+
∂g

∂x
l

Columns of ∂g
∂x

∈ Rn×p are normals to tangent space TM (x) of manifold M

generated by g(x) in x.

ẋ ∈ TM (x) =⇒ (
∂g

∂x
)T ẋ = 0 =⇒ l = [(

∂g

∂x
)T
∂g

∂x
]−1(

∂g

∂x
)T
∂f

∂x

Project gradient flow

ẋ = −[I − ∂g

∂x
[(
∂g

∂x
)T
∂g

∂x
]−1(

∂g

∂x
)T ]

∂f

∂x
= −ΠM (x)

∂f

∂x
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Constrained optimization: ‘Lagrangean’ with Lagrange multipliers:

L(x, l) = f(x)− lT g(x)

First order optimality conditions: n+ p eqs. in n+ p unknowns:

∂L

∂x
=

∂f

∂x
− ∂g

∂x
l = 0

∂L

∂l
= g(x) = 0

What if f(x) (e.g. least squares) and constraints g(x) are multivariate
polynomial ? Then

∂f
∂x = ∂g

∂x l and g(x) = 0 are multivariate polynomial !

Solutions (‘roots’): local/global minima/maxima, and saddlepoints. The
global minimum of f(x) is multivariate polynomial in one of the roots.

How to find the roots of a set of multivariate polynomials ?
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Rooting a set of multivariate polynomials is an eigenvalue problem !

James Joseph Sylvester

Algebra (fundamental theorem)

Numerical linear algebra (power method and
derivates, multiparameter eig. problem (MEVP),
SVD)

(Commutative) Algebraic geometry (ideals and
varieties)

Optimization theory (Lagrangean)

System theory (state space, realization theory)

nD system theory (nD realization)

Operator theory (shift-invariant spaces)

Interpolation theory (moment problems)
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Example: Univariate polynomial of degree 3:

x3 + a1x
2 + a2x+ a3 = 0,

having three distinct roots x1, x2 and x3

 a3 a2 a1 1 0 0
0 a3 a2 a1 1 0
0 0 a3 a2 a1 1




1 1 1
x1 x2 x3

x2
1 x2

2 x2
3

x3
1 x3

2 x3
3

x4
1 x4

2 x4
3

x5
1 x5

2 x5
3

 = 0

Banded Toeplitz;
linear homogeneous
equations

Null space:
(Confluent)
Vandermonde
structure

Corank (nullity) =
number of solutions
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Two univariate polynomials: common roots ?

f(x) = x3 − 6x2 + 11x− 6 = (x− 1)(x− 2)(x− 3)

g(x) = −x2 + 5x− 6 = −(x− 2)(x− 3)



1 x x2 x3 x4

f(x) = 0 −6 11 −6 1 0
x · f(x) = 0 −6 11 −6 1
g(x) = 0 −6 5 −1
x · g(x) = 0 −6 5 −1
x2 · g(x) = 0 −6 5 −1




1 1
x1 x2
x21 x22
x31 x32
x41 x42

 = 0

where x1 = 2 and x2 = 3 are the common roots of f and g

Sylvester matrix = double banded Toeplitz

Null space = (confluent) Vandermonde structure

Null space = intersection of null spaces of two banded Toeplitz
matrices

Nullity = number of common zeros
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The vectors in the Vandermonde kernel K obey a ‘shift structure’:
1 1
x1 x2

x2
1 x2

2
x3

1 x3
2

[ x1 0
0 x2

]
=


x1 x2

x2
1 x2

2
x3

1 x3
2

x4
1 x4

2


or

K.D = K

The Vandermonde structure K is not available directly, instead we compute Z, for
which ZV = K. We now have

K.D = K

Z.V.D = Z.V

Generalized EVP with eigenvalues in D and eigenvectors the columns of V .

Null space R(K) = R(Z) is shift-invariant.
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Two polynomials in two variables

Consider{
p(x, y) = x2 + 3y2 − 15 = 0
q(x, y) = y − 3x3 − 2x2 + 13x− 2 = 0

Fix a monomial order, e.g., 1 < x < y < x2 < xy <
y2 < x3 < x2y < . . .

Construct quasi-Toeplitz Macaulay matrix M :


1 x y x2 xy y2 x3 x2y xy2 y3

p(x, y) −15 1 3
q(x, y) −2 13 1 −2 −3
x · p(x, y) −15 1 3
y · p(x, y) −15 1 3





1
x
y
x2

xy
...
xy2

y3



=0
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{
p(x, y) = x2 + 3y2 − 15 = 0
q(x, y) = y − 3x3 − 2x2 + 13x− 2 = 0

Continue to enlarge M (‘quasi-Toeplitzification’):

it # form 1 x y x2 xy y2 x3 x2y xy2 y3 x4x3yx2y2xy3y4 x5x4yx3y2x2y3xy4y5→
d = 3

p − 15 1 3
xp − 15 1 3
yp − 15 1 3
q − 2 13 1 − 2 − 3

d = 4

x2p − 15 1 3
xyp − 15 1 3

y2p − 15 1 3
xq − 2 13 1 − 2 − 3
yq − 2 13 1 − 2 − 3

d = 5

x3p − 15 1 3

x2yp − 15 1 3

xy2p − 15 1 3

y3p − 15 1 3

x2q − 2 13 1 − 2 − 3
xyq − 2 13 1 − 2 − 3

y2q − 2 13 1 − 2 − 3

↓ .
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

# rows grows faster than # cols ⇒ overdetermined system

If solution exists: rank deficient by construction!
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Macaulay matrix M :

M =

[× × × × 0 0 0
0 × × × × 0 0
0 0 × × × × 0
0 0 0 × × × ×

]

Solutions generate vectors in kernel of M :

MK = 0

Number of solutions s follows from rank
decisions

Francis Sowerby Macaulay

Vandermonde null space K
built from s solutions (xi, yi):

1 1 . . . 1

x1 x2 . . . xs

y1 y2 . . . ys

x2
1 x2

2 . . . x2
s

x1y1 x2y2 . . . xsys

y2
1 y2

2 . . . y2
s

x3
1 x3

2 . . . x3
s

x2
1y1 x2

2y2 . . . x2
sys

x1y2
1 x2y2

2 . . . xsy2
s

y3
1 y3

2 . . . y3
s

x4
1 x4

2 . . . x4
4

x3
1y1 x3

2y2 . . . x3
sys

x2
1y

2
1 x2

2y
2
2 . . . x2

sy
2
s

x1y3
1 x2y3

2 . . . xsy3
s

y4
1 y4

2 . . . y4
s

...
...

...
...


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Setting up an eigenvalue problem in x

Choose s linear independent rows in K

S1K

This corresponds to finding linear
dependent columns in M



1 1 . . . 1

x1 x2 . . . xs

y1 y2 . . . ys

x2
1 x2

2 . . . x2
s

x1y1 x2y2 . . . xsys

y2
1 y2

2 . . . y2
s

x3
1 x3

2 . . . x3
s

x2
1y1 x2

2y2 . . . x2
sys

x1y2
1 x2y2

2 . . . xsy2
s

y3
1 y3

2 . . . y3
s

x4
1 x4

2 . . . x4
4

x3
1y1 x3

2y2 . . . x3
sys

x2
1y

2
1 x2

2y
2
2 . . . x2

sy
2
s

x1y3
1 x2y3

2 . . . xsy3
s

y4
1 y4

2 . . . y4
s

...
...

...
...


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Shifting the selected rows gives (shown for 3 columns)

1 1 1
x1 x2 x3
y1 y2 y3
x21 x22 x23
x1y1 x2y2 x3y3
y21 y22 y23
x31 x32 x33
x21y1 x22y2 x23y3
x1y

2
1 x2y

2
2 x3y

2
3

y31 y32 y33
x41 x42 x44
x31y1 x32y2 x33y3
x21y

2
1 x22y

2
2 x23y

2
3

x1y
3
1 x2y

3
2 x3y

3
3

y41 y42 y43
.
.
.

.

.

.

.

.

.


→ “shift with x”→



1 1 1
x1 x2 x3
y1 y2 y3
x21 x22 x23
x1y1 x2y2 x3y3
y21 y22 y23
x31 x32 x33
x21y1 x22y2 x23y3
x1y

2
1 x2y

2
2 x3y

2
3

y31 y32 y33
x41 x42 x44
x31y1 x32y2 x33y3
x21y

2
1 x22y

2
2 x23y

2
3

x1y
3
1 x2y

3
2 x3y

3
3

y41 y42 y43
.
.
.

.

.

.

.

.

.


so that: 1 1 1

x1 x2 x3
y1 y2 y3
x1y1 x2y2 x3y3
x31 x32 x33
x21y1 x22y2 x23y3

[ x1
x2

x3

]
=


x1 x2 x3
x21 x22 x23
x1y1 x2y2 x3y3
x21y1 x22y2 x23y3
x41 x42 x44
x31y1 x32y2 x33y3


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Finding the x-roots

Let Dx = diag(x1, x2, . . . , xs), then

S1 KDx = Sx K,

where S1 selects linear independent rows of K and Sx the ones ‘hit’ by the shift x.

Generalized Vandermonde K is not known as such, instead a null space basis Z is
calculated, which is a linear transformation of K:

ZV = K

which leads to the generalized eigenvalue problem

( S1 Z)V Dx = ( Sx Z)V

Here, V is the matrix with eigenvectors, Dx contains the roots x as eigenvalues.
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Setting up an eigenvalue problem in y

It is possible to shift with y as well. . .

We find
S1KDy = SyK

with Dy diagonal matrix of y-components of roots, leading to

(SyZ)V = (S1Z)V Dy

Some interesting observations:

– same eigenvectors V !

– (SxZ)−1(S1Z) and (SyZ)−1(S1Z) commute
=⇒ ‘commutative algebra’
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Single shift invariance

Γ =



C
CA

CA2

.

.

.

CAp−2

CAp−1


=⇒ ΓA = Γ

Null space of Toeplitz or Sylvester

Single shift (only one A)

Cayley-Hamilton

Shift-invariant R(Γ) fixed by λ(A)

1D observability

1D realization theory

1D Beurling-Lax

‘Block’ when C = matrix

Multi-shift invariance (n = 2)

Γ =



C
CA1
CA2

CA2
1

CA1A2

CA2
2

.

.

.

CA
p−1
1

CA
p−2
1 A2

.

.

.

CA
p−1
2



=⇒ Γ A1 = S1Γ
Γ A2 = S2Γ

Null space of Macaulay

n shifts A1, A2: A1A2 = A2A1

nD Cayley-Hamilton (new)

Multi-shift invariant R(Γ) fixed by
λ(A1) and λ(A2)

nD observability

nD realization theory

nD Beurling-Lax

‘Block’ when C = matrix
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Not treated here:

Deflate roots at infinity

Algorithms: kernel-driven versus data-driven (QR), SVD for
rank decisions, ....

Cayley-Hamilton (in 1D and nD)

1D and nD system theoretic interpretations of the null space
(1D and nD observability matrices) based on 1D/nD state
space models (possibly singular (roots at infinity))

...
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Finding the minimum of univariate polynomial

p(x) = α0x
n + α1x

n−1 + . . .+ αn

min
σ
σ = p(x) subject to p′(x) = 0

Construct Sylvester matrix M with σ = p(x) and p′(x) = 0:(
M11 M12

M21 − σI M22

)(
u
v

)
= 0

(M21 −M22M
−1
12 M11)u = uσ
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p(x) = 6x
5 − 45x

4
+ 110x

3 − 90x
2

+ 30

p
′
(x) = 30x

4 − 180x
3

+ 330x
2 − 180x

Fifth degree polynomial



0 −180 330 −180 30 0 0 0 0
0 0 −180 330 −180 30 0 0 0
0 0 0 −180 330 −180 30 0 0
0 0 0 0 −180 330 −180 30 0
0 0 0 0 0 −180 330 −180 30

30− σ 0 −90 110 −45 6 0 0 0
0 30− σ 0 −90 110 −45 6 0 0
0 0 30− σ 0 −90 110 −45 6 0
0 0 0 30− σ 0 −90 110 −45 6





1
x

x2

x3

x4

x5

x6

x7

x8


= 0

Eigenvalues of (M21 −M22M
−1
12 M11)

λ


30 −54 45 −10
0 −30 56 −15
0 −90 135 −34
0 −204 284 −69

 = (30, 22, 11, 3)

Minimal eigenvalue from inverse power method ! 29 / 55
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Generalizes to multivariate polynomial optimization problems:

min
x∈Rn

f(x) subject to g(x) = 0,

with f(.) scalar multivariate polynomial objective function
g(x) ∈ Rp p multivariate polynomial constraints:

Sylvester matrix −→ (block) Macaulay matrix

Null space shift-invariant −→ multi-shift invariant

1 parameter EVP −→ multi-parameter EVP

Critical value global minimum σ as smallest eigenvalue −→
Critical value global minimum σ = f(x∗) where elements of
x∗ are eigenvalues of commuting matrices A1, A2, . . .
obtained from multi-shift invariant null space.
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b(z)	 1/a(z)	

c(z)	 1/d(z)	

u	

u	

^	

~	

u	 y	

y	

y	

~	

e	

^	

-	

available	data	

misfit	

latency	

Misfit-Latency	
LTI	Models	
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SISO transfer function (with Z{xk} = x(z)), e.g. ARMAX:

y(z) =
b(z)

a(z)
u(z) +

c(z)

a(z)
e(z),

with polynomial a(z) (monic), b(z), c(z) (monic) of degree na, nb, nc.

Corresponding difference equation with αi, βi, γi ∈ R:

yk+na + α1yk+na−1 + . . .+ αnayk = β0uk+nb + β1yk+nb−1 + . . .+ αnbuk

+ek+nc + γ1ek+nc−1 + . . .+ γncek
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Algebraic representation, e.g. ARMAX.

Tay = Tbu+ Tce

where yT = (y0 y1 . . . yN ) and e, u alike.

Ta, Tb, Tc are banded Toeplitz convolution operators, e.g. Tc:
γnc γnc−1 . . . . . . γ1 1 0 0 . . . 0
0 γnc γnc−1 . . . γ2 γ1 1 0 . . . 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . . . . . . . . . . . . . γnc γnc−1 . . . . . . 1


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c(z)

y

e
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Latency: MA
Moving Average

ŷ

=
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Latency case: Moving average: Given y ∈ RN .

min
e∈RN+nc ,γi∈R

σ2 = ‖e‖22 subject to y = Tce.

Tc ∈ RN×(N+nc) = banded Toeplitz of full row rank (monic: γ0 = 1). e ∈ RN+nc

because of nc initial conditions.
Underdetermined set of linear equations: minimum norm solution

e = T †c y = TTc (TcT
T
c )−1y,

so that
σ2 = ‖e‖22 = eT e = yT (TcT

T
c )−1y = yTD−1

c y ,

where Dc is symm. pos. def. banded Toeplitz, quadratic in the γi.

Interpretation: We look for a metric D−1
c in which the weighted norm of y is minimal.

T †c is a ‘whitening’ filter.
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First order optimality conditions from σ2 = yTD−1
c y:

∂σ2

∂γi
= yT

∂D−1
c

∂γi
y = −yTD−1

c

∂Dc

∂γi
D−1
c y = 0 , i = 1, . . . , nc. (1)

These are nc ‘nonlinear’ equations in the nc unknowns γi.
Since

D−1
c = adj(Dc)/ det(Dc),

where the adjugate matrix adj(Dc) is multivariate polynomial in the γi, equations (1)
constitute nc multivariate polynomials in nc variables γi:

∂σ2

∂γi
= 0 = yT adj(Dc)

∂Dc

∂γi
adj(Dc)y , i = 1, . . . , nc.

The γi are the roots of a set of nc multivariate polynomials in nc unkowns.
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Call f = D−1
c y, then, with σ2 = yTD−1

c y:(
Dc y
yT σ2

)(
f
−1

)
= 0. (2)

First order optimality conditions: Chain rule with Dγic = ∂Dc/∂γi, fγi = ∂f/∂γi and
∂σ2/∂γi = 0:(

D
γi
c 0
0 0

)(
f
−1

)
+

(
Dc y
yT σ2

)(
fγi

0

)
= 0 , i = 1, . . . , nc. (3)

(N + 1)(nc + 1) equations: N + 1 in (2) and nc.(N + 1) in (3).
(N + 1)(nc + 1) unknowns: N (f) + nc.N (fγi ) + nc (γi) + 1 (σ2).

The last row of (2) defines σ2.

The last row of (3) defines nc orthogonality relations yT fγi = 0, i = 1, . . . , nc.
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Latency case: MA (nc = 1) Dγc Dc 0
Dc 0 y
0 yT 0

 f
fγ

−1

 = 0.

For N = 4:



2γ 1 0 0 1 + γ2 γ 0 0 0

1 2γ 1 0 γ 1 + γ2 γ 0 0

0 1 2γ 1 0 γ 1 + γ2 γ 0

0 0 1 2γ 0 0 γ 1 + γ2 0

1 + γ2 γ 0 0 0 0 0 0 y0
γ 1 + γ2 γ 0 0 0 0 0 y1
0 γ 1 + γ2 γ 0 0 0 0 y2
0 0 γ 1 + γ2 0 0 0 0 y3
0 0 0 0 y0 y1 y2 y3 0





f0
f1
f2
f3
f
γ
0
f
γ
1
f
γ
2
f
γ
3
−1


= 0.

Regroup as quadratic eigenvalueproblem and ‘linearize’ :

(A2γ
2
+A1γ+A0)z = 0 with z =

 −1
f
fγ

 =⇒
(

0 I
A0 A1

)(
z
zγ

)
=

(
I 0
0 −A2

)(
z
zγ

)
γ.

Block shift invariant null space =⇒ EVP
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Latency case MA (nc = 2) D
γi
c Dc 0
Dc 0 y

0 yT 0

 f
fγi

−1

 = 0 , i = 1, 2.

Regroup in a multi-parameter eigenvalueproblem with zT = (−1 fT (fγ1 )T (fγ2 )T ) :

(A00 + A10γ1 + A01γ2 + A20γ
2
1 + A11γ1γ2 + A02γ

2
2 )



z
zγ1
zγ2
zγ21
zγ1γ2
zγ21

 = 0.

and build up block Macaulay recursively (quasi-Toeplitz-ify) until ‘mind-the-gap’ starts
in the null space, which is block multi-shift invariant:



1 γ1 γ2 γ21 γ1γ2 γ22 γ31 γ21γ2 γ1γ
2
2 γ32 γ41 . . .

1 A00 A10 A01 A20 A11 A02 0 0 0 0 0 . . .
×γ1 0 A00 0 A10 A01 0 A20 A11 A02 0 0 . . .
×γ2 0 0 A00 0 A10 A01 0 A20 A11 A02 0 . . .
×γ21 0 0 0 A00 0 0 A10 A01 0 0 A20 . . .
×γ1γ2 0 0 0 0 A00 0 0 A10 A01 0 0 . . .
×γ22 0 0 0 0 0 A00 0 0 A10 A01 0 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.





z
zγ1
zγ2
zγ21
zγ1γ2
zγ2

zγ31
.
.
.


= 0

Block multi-shift invariant null space =⇒ Multiparameter EVP
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Misfit case: Least squares realization (na)
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Misfit case: Least squares realization (na)
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Misfit case: Dynamic Total Least Squares (na, nb)
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Block multi-shift invariant null space =⇒ Multiparameter EVP
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Latency case: ARMA (na, nc)
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Latency case: ARMAX (na, nb, nc)
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e
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latency
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û
=
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=

Block multi-shift invariant null space =⇒ Multiparameter EVP
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Misfit case: Output Error (na, nb)
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Misfit+Latency case: ARMAX with I/O Misfit(na, nb, nc)
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Name u e α β γ a b c d
Exact data
Autonomous system 0 0 ∞ ∞ ∞ a 1 1 1
Exact FIR u 0 ∞ ∞ ∞ 1 b 1 1
Diff. eq. u 0 ∞ ∞ ∞ a b 1 1
...
Latency
MA 0 e ∞ ∞ 1 1 1 c 1
AR 0 e ∞ ∞ 1 1 1 1 d
ARMA 0 e ∞ ∞ 1 1 1 c d
ARMAX u e ∞ ∞ 1 a b c a
...
Misfit
LS Realization 0 0 1 ∞ ∞ a 1 1 1
OE FIR u 0 1 ∞ ∞ 1 b 1 1
IE FIR u 0 ∞ 1 ∞ 1 b 1 1
IE+OE FIR u 0 α β ∞ 1 b 1 1
OE u 0 1 ∞ ∞ a b 1 1
IE u 0 ∞ 1 ∞ a b 1 1
Dynamic TLS u 0 α β ∞ a b 1 1
...
Misfit + Latency
ARMAX with M+L u e α β γ a b c a
...
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If

Activation functions = polynomial
function of sum of weighted (=
parameters) inputs

Objective function is multivariate
polynomial (e.g. least squares)

then, in principle, training a neural
network is finding the minimal eigenvalue
of a (large) matrix.
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Main conclusions:
Multivariate polynomial problems are ubiquitous (many applications!)

Multivariate polynomial optimization problems are eigenvalue problems

Path goes over

- Affinely structured matrices: Toeplitz, Sylvester, Macaulay and
block versions

- Multiparameter eigenvalue problems
- Null spaces that are (block) (multi-)shift invariant
- Roots follow from the multi-shift invariance via nD realization

theory
- Only one minimizing root needs to be calculated (e.g. inverse

power method)

Misfit/latency identification of LTI dynamical systems = solved !

Patiently studying mathematics (over different fields), inventing new math and
deploying it into mathematical engineering, pays off.

This talk: many details omitted !
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Future work

Numerical algorithms (large scale structure exploiting iterative
algorithms)

Explore system theoretic properties

Explore numerical issues: conditioning, sensitivity, etc.

Applicability to neural nets / machine learning ?
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Bolzmann at 55: ”When I look back on all the scientific developments and revolutions
that occurred since the beginning of my career, I feel like a monument of ancient
scientific memories. I would go further and say that I am the only one left who still
grasped the old doctrines with unreserved enthusiasm - at any rate I am the only one
who still fights for them as far as I can. I regard as my life’s task to help to ensure, by
as clear and logically ordered an elaboration as I can give of the results of the classical
theory, that the great portion of valuable and permanently usable material that in my
view is contained in it need not be rediscovered one day, which would not be the first
time that such an event had happened in science. I therefore present myself to you as
a reactionary, one who has stayed behind and remains enthusiastic for the old classical
doctrines as against the men of today; but I do not believe that I am narrow-minded
or blind for the advantages of the new doctrines.”
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Bolzmann at 55: ”When I look back on all the scientific developments and revolutions
that occurred since the beginning of my career, I feel like a monument of ancient
scientific memories. I would go further and say that I am the only one left who still
grasped the old doctrines with unreserved enthusiasm - at any rate I am the only one
who still fights for them as far as I can. I regard as my life’s task to help to ensure, by
as clear and logically ordered an elaboration as I can give of the results of the classical
theory, that the great portion of valuable and permanently usable material that in my
view is contained in it need not be rediscovered one day, which would not be the first
time that such an event had happened in science. I therefore present myself to you as
a reactionary, one who has stayed behind and remains enthusiastic for the old classical
doctrines as against the men of today; but I do not believe that I am narrow-minded
or blind for the advantages of the new doctrines.”

At the end of the day, the only thing we really understand, is linear algebra
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